The omegam-ml REST API

The REST API provides a direct interface to models and datasets from any connected client. Unlike the Python API, the client does not need access to either MongoDB or RabbitMQ to make use of omegaml, nor does the client need to use the Python language. Use the REST API to interface from any third-party system to omegaml.

Starting the REST API

The REST API is started by the following command. It starts a `Flask`_ application that provides endpoints for datasets, models, scripts and jobs.

$ om runtime serve

Access to endpoints can be selectively restricted by specifing rules as regular expressions:

# allow all datasets, models, scripts, jobs
$ om runtime serve
$ om runtime serve ".*/.*/.*"

# allow all models, no datasets, scripts and jobs
$ om runtime serve "model/.*/.*"

# allow only model foo
$ om runtime serve "model/foo/.*"

# allow only model foo, prediction
$ om runtime serve "model/foo/predict"

Rules can be specified in a file, one rule per line:

# rules.txt
model/.*/.*
scripts/.*/.*

$ om runtime serve --rules rules.txt

Rules can be specified in the OMEGA_RESTAPI_FILTER env variable, with rules separated by ;

$ export OMEGA_RESTAPI_FILTER="model/.*/.*"
$ om runtime serve

API Reference

The API reference is accessible online from your omega-ml instance at:

  • /api/doc/v1- Swagger UI

  • /api/doc/v1/specs/swagger.json - the Swagger specs (JSON)

  • /api/redoc - ReDoc UI, based on Swagger specs

API Semantics

The omega-ml REST API resources are all of the form /api/version/resource-name/resource-key/?param=value.

Resources

The valid resource names are:

  • dataset - access datasets

  • model - run model tasks like fit, predict

  • job - runs jobs (notebooks)

  • script - runs scripts

  • config - access the user-specific omega-ml configuration Commercial Edition

The resource-key and query parameters are optional. If a resource-key is not provided, a list of existing resources is returned. If a resource-key is provided the API will look up the respective specific resource for this key and return its content.

Note that the dataset and job resources will return dataset and job contents, respectively. The model resource will only provide meta data, but not the actual contents of the model.

Methods and Responses

All resources support a set of HTTP GET, PUT, POST or DELETE methods.

  • successful GET => HTTP 200 OK

  • successful POST => HTTP 201 created

  • successful PUT => HTTP 202 accepted

  • successful DELETE => HTTP 202 accepted

Commercial Edition

  • error due to bad input parameters => HTTP 400 Bad Request

  • error due to authentication => HTTP 401 Unauthorized

  • error due to wrong authorization => HTTP 403 Forbidden

  • error due to non existing resource => HTTP 404 Not found

  • error due to not allowed method => HTTP 405 Method not allowed

  • severe server errors => HTTP 500 Internal Server error

Asynchronous API execution

The omega-ml REST API by default is synchronous, however model, script and notebook tasks can be run asynchronously. To do this, add async=1 as query parameter:

GET /api/v1/model/mymodel/?datax=sample[x]&datay=sample[y]&async=1
=>
HTTP 202/ACCEPTED
Location: /api/v1/task/b552e887-9ced-4e87-a203-0a4183e4f461/result

Next the most recent task status result can be queried at the URI given by Location:

GET /api/v1/task/b552e887-9ced-4e87-a203-0a4183e4f461/result?resource_uri=/api/v1/model/mymodel/
=>
{"response": {"model": "mymodel", "result": ...},
 "status": "SUCCESS",
 "task_id": "b552e887-9ced-4e87-a203-0a4183e4f461"
}

Authentication and Authorization

Commercial Edition

From your omega-ml portal, get the userid and api key.

from omegaml.client.cli.auth import OmegaRestApiAuth
auth = OmegaRestApiAuth(userid, apikey)

Working with data (REST API)

Listing datasets

  resp = requests.get('http://host:port/api/v1/dataset/', auth=auth)
  resp.json()
  =>
  {'meta': {'limit': 20,
 'next': None,
 'offset': 0,
 'previous': None,
 'total_count': 3},
'objects': [{'data': {'kind': 'pandas.dfrows', 'name': 'sample'},
  'dtypes': None,
  'index': None,
  'name': None,
  'orient': None,
  'resource_uri': '/api/v1/dataset/sample/'},
 {'data': {'kind': 'pandas.dfrows', 'name': 'sample2'},
  'dtypes': None,
  'index': None,
  'name': None,
  'orient': None,
  'resource_uri': '/api/v1/dataset/sample2/'},
 {'data': {'kind': 'pandas.dfrows', 'name': 'sample99'},
  'dtypes': None,
  'index': None,
  'name': None,
  'orient': None,
  'resource_uri': '/api/v1/dataset/sample99/'}]}

Reading data

   resp = requests.get('http://host:port/api/v1/dataset/sample', auth=auth)
   resp.json()
   =>
   {'data': {'x': {'0': 0,
  '1': 1,
  '10': 0,
  '11': 1,
  '12': 2,
  '13': 3,
  '14': 4,
  '15': 5,
  '16': 6,
  '17': 7,
  '18': 8,
  '19': 9,
  '2': 2,
  '20': 0,
  '21': 1,
  '22': 2,
  '23': 3,
  '24': 4,
  '25': 5,
  '26': 6,
  '27': 7,
  '28': 8,
  '29': 9,
  '3': 3,
  '4': 4,
  '5': 5,
  '6': 6,
  '7': 7,
  '8': 8,
  '9': 9}},
'dtypes': {'x': 'int64'},
'index': {'type': 'Int64Index',
 'values': [0,
  1,
  2,
  3,
  4,
  5,
  6,
  7,
  8,
  9,
  0,
  1,
  2,
  3,
  4,
  5,
  6,
  7,
  8,
  9,
  0,
  1,
  2,
  3,
  4,
  5,
  6,
  7,
  8,
  9]},
'name': 'sample',
'orient': 'dict',
'resource_uri': '/api/v1/dataset/None/'}

Note

To get a valid dataframe back do as follows.

import pandas as pd
df = pd.DataFrame.from_dict(resp.json().get('data'))
df.index = index=resp.json().get('index').get('values')

It is important to set the index to restore the correct row order. This is due to Python’s arbitrary order of keys in the data dict.

Writing data

Writing data is equally straight forward. Note this works for both new and existing datasets. By default data is appended to an existing dataset.

data = {'data': {'x': {'0': 0,
   '1': 1,
   '2': 2,
   '3': 3,
   '4': 4,
   '5': 5,
   '6': 6,
   '7': 7,
   '8': 8,
   '9': 9}},
 'dtypes': {'x': 'int64'},
 'orient': 'dict',
 'index': {'type': 'Int64Index', 'values': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]},
 'name': 'sample'}
requests.put('http://host:port/api/v1/dataset/sample/', auth=auth,
             json=data)
=>
<Response [204]>

To overwrite an existing data set, use append: false

data = {'data': {'x': {'0': 0,
   '1': 1,
   '2': 2,
   '3': 3,
   '4': 4,
   '5': 5,
   '6': 6,
   '7': 7,
   '8': 8,
   '9': 9}},
 'dtypes': {'x': 'int64'},
 'append': False,
 'orient': 'dict',
 'index': {'type': 'Int64Index', 'values': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]},
 'name': 'sample'}
requests.put('http://localhost:8001/api/v1/dataset/sample/', auth=auth,
             json=data)
=>
<Response [204]>

Transform a DataFrame to API format

To transform a Pandas DataFrame into the format expected by the API, use the following code snippet.

def pandas_to_apidata(df, append=False):
     # TODO put logic for this into client lib
     data = {
         'append': append,
         'data': json.loads(df.to_json()),
         'dtypes': {k: str(v)
                    for k, v in df.dtypes.to_dict().items()},
         'orient': 'columns',
         'index': {
             'type': type(df.index).__name__,
             # ensure type conversion to object for Py3 tastypie does
             # not recognize numpy.int64
             'values': list(df.index.astype('O').values),
         }
     }
     return data

Working with models (REST API)

Create a model

data = {'name': 'mymodel',
        'pipeline': [
            # step name, model class, kwargs
            ['LinearRegression', dict()],
        ]}
requests.post('http://localhost:8001/api/v1/model/',
                 json=data,
                 auth=auth)
=>
<Response [201]>
{'model': {'bucket': 'store',
 'created': '2016-01-16 22:05:06.192000',
 'kind': 'sklearn.joblib',
 'name': 'mymodel'}}

Fit a model

Create some data first:

# a simple data frame to learn
df = pd.DataFrame({'x': range(10)})
df['y'] = df['x'] * 2
datax = pandas_to_apidata(df[['x']])
datay = pandas_to_apidata(df[['y']])

# store data
requests.put('http://localhost:8001/api/v1/dataset/datax/', auth=auth,
             data=json.dumps(datax))
requests.put('http://localhost:8001/api/v1/dataset/datay/', auth=auth,
             json=datay)
=>
<Response [204]>

Then we can fit the model:

resp = requests.put('http://localhost:8001/api/v1/model/mymodel/fit/?datax=datax&datay=datay', auth=auth, data={})
resp.json()
=>
{'datax': 'datax', 'datay': 'datay', 'result': 'ok'}

Subsequently, the model is ready for prediction:

resp = requests.get('http://localhost:8001/api/v1/model/mymodel/predict/?datax=datax', auth=auth, data={})
resp.json()
=>
{'datax': 'datax',
 'datay': None,
 'result': [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0]}

Working with jobs (REST API)

Listing jobs

resp = requests.get('http://localhost:8001/api/v1/job/',
                      auth=auth)
resp.json()
=>
{u'meta': {u'previous': None, u'total_count': 1,
           u'offset': 0, u'limit': 20, u'next': None},
u'objects': [{u'job_runs': [],
              u'job_results': {}, u'name': u'testjob.ipynb',
              u'created': u'2016-02-06T21:33:49.833000'}]}

Running a job

resp = requests.post('http://localhost:8001/api/v1/job/testjob/run/',
                      auth=auth)
resp.json()
=>
{u'job_runs': {u'1517953074': u'OK'},
 u'job_results': [u'results/testjob_1517953074.ipynb'],
 u'name': u'testjob.ipynb',
 u'created': u'2016-02-06T21:37:54.014000'}

Getting job results

To get job results in iPython notebook format, use

resp = requests.get('http://localhost:8001/api/v1/job/results/testjob_1517953074.ipynb/',
                      auth=auth)
resp.json()
=>
{u'source_job': u'testjob', u'job_results': {},
u'created': u'2016-02-06T21:36:06.704000',
u'content': {u'nbformat_minor': 0, u'nbformat': 4,
             u'cells': [{u'execution_count': 1, u'cell_type': u'code',
                         u'source': u"print('hello')",
                         u'outputs': [{u'output_type':
                                       u'stream', u'name': u'stdout',
                                       u'text': u'hello\n'}],
                                       u'metadata': {}}],
             u'metadata': {}},
u'job_runs': [],
u'name': u'results/testjob_1517952965.ipynb'}

Getting a job report

To get job results in HTML format, use

resp = requests.get('http://localhost:8001/api/v1/job/export/testjob_1517953074.ipynb/',
                      auth=auth)
resp.json()
=>
{u'content': "<html> ... </html>",
 u'name': 'testjob_1517953074.ipynb'}

Getting information on a job

resp = requests.get('http://localhost:8001/api/v1/job/testjob/',
                      json=data, auth=auth)
resp.json()
=>
{u'content': {u'nbformat_minor': 0, u'nbformat': 4,
 u'cells': [{u'execution_count': None, u'cell_type':
             u'code', u'source': u"print('hello')",
             u'outputs': [], u'metadata': {}}],
             u'metadata': {}}, u'job_runs': [],
             u'job_results': {},
             u'name': u'testjob.ipynb',
             u'created': u'2016-02-06T21:44:59.290000'}