You're reading an old version of this documentation.
If you want up-to-date information, please have a look at
release/0.17.0.
- Module code
- omegaml.backends.tensorflow.tfkerassavedmodel
-
Source code for omegaml.backends.tensorflow.tfkerassavedmodel
1import tempfile
2
3from .tfsavedmodel import TensorflowSavedModelBackend
4
5
[docs]
6class TensorflowKerasSavedModelBackend(TensorflowSavedModelBackend):
7 KIND = 'tfkeras.savedmodel'
8
[docs]
9 @classmethod
10 def supports(self, obj, name, **kwargs):
11 import tensorflow as tf
12 tfSequential = tf.keras.models.Sequential
13 tfModel = tf.keras.models.Model
14 return isinstance(obj, (tfSequential, tfModel)) and kwargs.get('as_savedmodel')
15
16 def _make_savedmodel(self, obj, serving_input_receiver_fn=None, strip_default_attrs=None):
17 # https://www.tensorflow.org/api_docs/python/tf/keras/experimental/export_saved_model
18 import tensorflow as tf
19 export_dir = tempfile.mkdtemp()
20 tf.keras.models.save_model(obj, export_dir,
21 save_format='tf')
22 return export_dir
23
[docs]
24 def fit(self, modelname, Xname, Yname=None, pure_python=True, tpu_specs=None, **kwargs):
25 raise ValueError('cannot fit a saved model')