Tensorflow

Tensorflow provides several types of models

  • Native tensorflow models

  • Tensorflow Keras models

  • Estimator models

  • SavedModel

omega-ml supports all model variants as trained SavedModels. Keras models and Estimator models can also be serialized to and trained by the cluster as Python instances. The runtime can execute arbitrary functions that generate a model, train and save it as a SavedModel for subsequent consumption e.g. via the model REST API.

Concepts

Keras models

Consider the following Tensorflow model (source Modelnet). This is a stanard TF Keras model that uses the MobileNetV2 for image detection and trains a new output layer.

(...)
mobile_net = tf.keras.applications.MobileNetV2(input_shape=(192, 192, 3), include_top=False)
mobile_net.trainable=False
model = tf.keras.Sequential([
  mobile_net,
  tf.keras.layers.GlobalAveragePooling2D(),
  tf.keras.layers.Dense(len(label_names))])
model.compile(optimizer='adam',
              loss=tf.keras.losses.sparse_categorical_crossentropy,
              metrics=["accuracy"])
model.summary()
model.fit(ds, epochs=1, steps_per_epoch=3)

Store the model to omega-ml as follows:

om.models.put(model, 'tfkeras-flower')

Load and use the model for prediction as follows. This runs the prediction on the local computer and does not use omega-ml’s runtime cluster.

model_ = om.models.get('tfkeras-flower')
img = plt.imread('/path/to/image')
result = model_.predict(np.array([img]))

Using the runtime cluster is equally straight forward:

img = plt.imread('/path/to/image')
result = om.runtime.model('tfkeras-flower').predict(np.array([img]))

The REST API similarly provides prediction:

resp = requests.put(predict_url, json={
            'columns': ['x'],
            'data': [{'x': img.flatten().tolist()}],
            'shape': [192, 192, 3],
      })
data = resp.json()
prediction = data['result']

tf.data.Dataset

Estimator models support tf.data.Dataset by means of virtual datasets. Virtual datasets are Python functions stored by om.datasets. On accessing a virtual dataset, the function is executed and the result is returned. Thus for Estimator models, a virtual dataset should be used to return a tf.data.Dataset.

om.datasets supports storing tf.train.Example records, a tf.data.Dataset can easily be constructed from this.