The omega|ml runtime¶
om.runtime
provides access to cloud resources:
Training a model¶
Training a model using a cloud cluster is straight forward:
# store some data and an unfitted model
pd = pd.DataFrame({'x': range(100))
reg = LinearRegression()
om.models.put(reg, 'mymodel')
# train the model using the cloud
om.runtime.model('mymodel').fit('sample[x]', 'sample[y]')
The same also works from the command line:
$ om datasets put sample.csv sample
$ om models put mymodel.create_model mymodel
$ om runtime model mymodel fit sample[x] sample[y]
Running grid search¶
In a similar way we can run a gridsearch:
$ om runtime model mymodel gridsearch