Working with Machine Learning Models¶
omega|ml currently implements the following machine learning frameworks out of the box. More backends are planned. Any backend can be implemented using the backend API.
scikit-learn
Keras
Tensorflow (tf.keras, tf.estimator, tf.data, tf.SavedModel)
Apache Spark MLLib
Note that support for Keras, Tensorflow and Apache Spark is experimental at this time.
Storing models¶
Storing models and pipelines is as straight forward as storing Pandas DataFrames and Series.
Simply create the model, then use om.models.put()
to store:
from sklearn.linear_model import LinearRegression
# train a linear regression model
df = pd.DataFrame(dict(x=range(10), y=range(20,30)))
clf = LinearRegression()
clf.fit(df[['x']], df[['y']])
# store the trained model
om.models.put(clf, 'lrmodel')
Models can also be stored untrained:
df = pd.DataFrame(dict(x=range(10), y=range(20,30)))
clf = LinearRegression()
# store the trained model
om.models.put(clf, 'lrmodel')
Using models to predict¶
Retrieving a model is equally straight forward:
clf = om.models.get('lrmodel')
clf
=>
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
Once retrieved the model can be accessed as any model kept in memory, e.g. to predict using new data:
clf = om.models.get('lrmodel')
df = pd.DataFrame(dict(x=range(70,80)))
clf.predict(df[['x']])
=>
array([[ 90.],
[ 91.],
[ 92.],
[ 93.],
[ 94.],
[ 95.],
[ 96.],
[ 97.],
[ 98.],
[ 99.]])
Using the compute cluster¶
Prediction¶
omega|ml provides a state-of-the art compute cluster, called the runtime. Using the runtime you can delegate model tasks to the cluster:
model = om.runtime.model('lrmodel')
result = model.predict(df[['x']])
result.get()
=>
array([[ 20.],
[ 21.],
[ 22.],
[ 23.],
[ 24.],
[ 25.],
[ 26.],
[ 27.],
[ 28.],
[ 29.]])
Note that the result
is a deferred object that we resolve using
get
.
Instead of passing data, you may also pass the name of a DataFrame stored in omegaml:
# create a dataframe and store it
df = pd.DataFrame(dict(x=range(70,80)))
om.datasets.put(df, 'testlrmodel')
# use it to predict
result = om.runtime.model('lrmodel').predict('testlrmodel')
result.get()
Model Fitting¶
To train a model using the runtime, use the fit
method on the runtime’s model, as you would
on a local model:
# create a dataframe and store it
df = pd.DataFrame(dict(x=range(10), y=range(20,30)))
om.datasets.put(df, 'testlrmodel')
# use it to fit the model
result = om.runtime.model('lrmodel').fit('testlrmodel[x]', 'testlrmodel[y]')
result.get()
GridSearch¶
currently supported for sckit-learn
To use cross validated grid search on a model, use the gridsearch
method on the runtime’s model. This
creates, fits and stores a GridSearchCV
instance and automatically links it to the model. Use the
GridSearchCV model to evaluate the performance of multiple parameter settings.
Note
Instead of using this default implementation of GridSearchCV
you may create your
own GridSearchCV
instance locally and then fit it using the runtime. In this case
be sure to link the model used for grid searching and the original model by changing the
attributes on the model’s metadata.
X, y = make_classification()
logreg = LogisticRegression()
om.models.put(logreg, 'logreg')
params = {
'C': [0.1, 0.5, 1.0]
}
# gridsearch on runtime
om.runtime.model('logreg').gridsearch(X, y, parameters=params)
meta = om.models.metadata('logreg')
# check gridsearch was saved
self.assertIn('gridsearch', meta.attributes)
self.assertEqual(len(meta.attributes['gridsearch']), 1)
self.assertIn('gsModel', meta.attributes['gridsearch'][0])
# check we can get back the gridsearch model
gs_model = om.models.get(meta.attributes['gridsearch'][0]['gsModel'])
self.assertIsInstance(gs_model, GridSearchCV)
Other Model tasks¶
The runtime provides more than just model training and prediction. The runtime implements a common API to all supported backends that follows the scikit-learn estimator model. That is the runtime supports the following methods on a model:
fit
partial_fit
transform
score
gridsearch
For details refer to the API reference.
Specific frameworks¶
Keras¶
The Keras backend implements the .fit() method with the following Keras-specific extensions:
validation_data=
can refer to a tuple of (testX, testY) dataset names instead of actual data values, similar to X, Y. This will load the validation dataset beforemodel.fit()
.Metadata.attributes.history
stores the history.history object, which is a dictionary of all metrics with one entry per epoch as the return value of Keras’s model.fit() method.
Tensorflow¶
Tensorflow provides several types of models
Native tensorflow models
Tensorflow Keras models
Estimator models
SavedModel
omega|ml supports all model variants as trained SavedModels. Keras models and Estimator models can also be serialized to and trained by the cluster as Python instances. The runtime can execute arbitrary functions that generate a model, train and save it as a SavedModel for subsequent consumption e.g. via the model REST API.
Concepts¶
Keras models¶
Consider the following Tensorflow model (source Modelnet). This is a stanard TF Keras model that uses the MobileNetV2 for image detection and trains a new output layer.
(...)
mobile_net = tf.keras.applications.MobileNetV2(input_shape=(192, 192, 3), include_top=False)
mobile_net.trainable=False
model = tf.keras.Sequential([
mobile_net,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(len(label_names))])
model.compile(optimizer='adam',
loss=tf.keras.losses.sparse_categorical_crossentropy,
metrics=["accuracy"])
model.summary()
model.fit(ds, epochs=1, steps_per_epoch=3)
Store the model to omega|ml as follows:
om.models.put(model, 'tfkeras-flower')
Load and use the model for prediction as follows. This runs the prediction on the local computer and does not use omega|ml’s runtime cluster.
model_ = om.models.get('tfkeras-flower')
img = plt.imread('/path/to/image')
result = model_.predict(np.array([img]))
Using the runtime cluster is equally straight forward:
img = plt.imread('/path/to/image')
result = om.runtime.model('tfkeras-flower').predict(np.array([img]))
The REST API similarly provides prediction:
resp = requests.put(predict_url, json={
'columns': ['x'],
'data': [{'x': img.flatten().tolist()}],
'shape': [192, 192, 3],
})
data = resp.json()
prediction = data['result']
tf.data.Dataset¶
Estimator models support tf.data.Dataset
by means of virtual datasets. Virtual datasets are Python
functions stored by om.datasets. On accessing a virtual dataset, the function is executed and the
result is returned. Thus for Estimator models, a virtual dataset should be used to return a tf.data.Dataset
.
om.datasets
supports storing tf.train.Example
records, a tf.data.Dataset
can easily be constructed
from this.