Working with Machine Learning Models ==================================== omega|ml currently implements the following machine learning frameworks out of the box. More backends are planned. Any backend can be implemented using the backend API. * scikit-learn * Keras * Tensorflow (tf.keras, tf.estimator, tf.data, tf.SavedModel) * Apache Spark MLLib Note that support for Keras, Tensorflow and Apache Spark is experimental at this time. Storing models -------------- Storing models and pipelines is as straight forward as storing Pandas DataFrames and Series. Simply create the model, then use :code:`om.models.put()` to store: .. code:: from sklearn.linear_model import LinearRegression # train a linear regression model df = pd.DataFrame(dict(x=range(10), y=range(20,30))) clf = LinearRegression() clf.fit(df[['x']], df[['y']]) # store the trained model om.models.put(clf, 'lrmodel') Models can also be stored untrained: .. code:: df = pd.DataFrame(dict(x=range(10), y=range(20,30))) clf = LinearRegression() # store the trained model om.models.put(clf, 'lrmodel') Using models to predict ----------------------- Retrieving a model is equally straight forward: .. code:: clf = om.models.get('lrmodel') clf => LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) Once retrieved the model can be accessed as any model kept in memory, e.g. to predict using new data: .. code:: clf = om.models.get('lrmodel') df = pd.DataFrame(dict(x=range(70,80))) clf.predict(df[['x']]) => array([[ 90.], [ 91.], [ 92.], [ 93.], [ 94.], [ 95.], [ 96.], [ 97.], [ 98.], [ 99.]]) Using the compute cluster ------------------------- Prediction ++++++++++ omega|ml provides a state-of-the art compute cluster, called the *runtime*. Using the runtime you can delegate model tasks to the cluster: .. code:: model = om.runtime.model('lrmodel') result = model.predict(df[['x']]) result.get() => array([[ 20.], [ 21.], [ 22.], [ 23.], [ 24.], [ 25.], [ 26.], [ 27.], [ 28.], [ 29.]]) Note that the :code:`result` is a deferred object that we resolve using :code:`get`. Instead of passing data, you may also pass the name of a DataFrame stored in omegaml: .. code:: # create a dataframe and store it df = pd.DataFrame(dict(x=range(70,80))) om.datasets.put(df, 'testlrmodel') # use it to predict result = om.runtime.model('lrmodel').predict('testlrmodel') result.get() Model Fitting +++++++++++++ To train a model using the runtime, use the :code:`fit` method on the runtime's model, as you would on a local model: .. code:: # create a dataframe and store it df = pd.DataFrame(dict(x=range(10), y=range(20,30))) om.datasets.put(df, 'testlrmodel') # use it to fit the model result = om.runtime.model('lrmodel').fit('testlrmodel[x]', 'testlrmodel[y]') result.get() GridSearch ++++++++++ **currently supported for sckit-learn** To use cross validated grid search on a model, use the :code:`gridsearch` method on the runtime's model. This creates, fits and stores a :code:`GridSearchCV` instance and automatically links it to the model. Use the GridSearchCV model to evaluate the performance of multiple parameter settings. .. note:: Instead of using this default implementation of :code:`GridSearchCV` you may create your own :code:`GridSearchCV` instance locally and then fit it using the runtime. In this case be sure to link the model used for grid searching and the original model by changing the attributes on the model's metadata. .. code:: X, y = make_classification() logreg = LogisticRegression() om.models.put(logreg, 'logreg') params = { 'C': [0.1, 0.5, 1.0] } # gridsearch on runtime om.runtime.model('logreg').gridsearch(X, y, parameters=params) meta = om.models.metadata('logreg') # check gridsearch was saved self.assertIn('gridsearch', meta.attributes) self.assertEqual(len(meta.attributes['gridsearch']), 1) self.assertIn('gsModel', meta.attributes['gridsearch'][0]) # check we can get back the gridsearch model gs_model = om.models.get(meta.attributes['gridsearch'][0]['gsModel']) self.assertIsInstance(gs_model, GridSearchCV) Other Model tasks +++++++++++++++++ The runtime provides more than just model training and prediction. The runtime implements a common API to all supported backends that follows the scikit-learn estimator model. That is the runtime supports the following methods on a model: * :code:`fit` * :code:`partial_fit` * :code:`transform` * :code:`score` * :code:`gridsearch` For details refer to the API reference. Specific frameworks ------------------- .. include:: keras.rst .. include:: tensorflow.rst